Real-Time Soft Body Simulation Using an
Approximation of the Pressure Force

Patrick Martin

1 | All content © 2009 DigiPen (USA) Corporation, all rights reserved.

Table of Contents

1
2
3

4

5

Y o1 1 Tl TSSO U PP PRRRTUUPRUPROPON 4
INErOAUCTION/REIGEEA WOTK. .. evvieiiiieieieeeeie ettt ettt et e s e st e s e s bt e e e s sabe e e s ssnbbeesssnraeas 4
Yo il 2Te Yo LYY [o T8 =T o PPN 4
3.1 SOTE MO ettt ettt e s bt e st e s be e e s bt e s bt e e s abeesbeeesabeesabeeeneeesabeeenne 4
3.1.1 SUrface SPring NETWOIKviiieee e et e e e eate e e e s rtaeeeeanes 4
3.1.2 Pressure SIMUIGTIONcoui ittt sttt sb e sree s 5
3.1.3 D7 0 0] 0 [=N 5
3.14 FIICEION ettt et e st e e st e e st e e s e e e e s e e e e e e re e e e e areeas 5
3.2 RUNGE-KUTTA 4 ...t sasnnan 6
(24 F=4To =TT AVY 11 4[] = Lo o TP PP 6
4.1 24 T=4To 1Y, Fo Yo LY IR PP 6
COllISION DELECLION ...ttt ettt s h e st ettt e bt e s bt e saeesaee st e ebe e bt e sbeesmeesaeeeneeentean 7
5.1 BrO@O PRaSe ..ottt sttt b e b e b e e et et et e nbe e sbeesheesanena 7
5.2 NAITOW PRaS@ ..ttt st ettt e b e e sreesaeesane e 7
521 SOTE VS, SOttt 7
5.2.1.1 FEATUIE TOSES . ettt et s 8
5.2.1.1.1 Vertex-Vertex Feature TeSt......coo i 8
5.2.1.1.2 Vertex-Edge FEaAture TeST ..ottt e e e s e e e e e e e ernenes 8
5.2.1.1.3 Vertex-Triangle FEature TESTcccciii ittt re e e e e e e e e 8
5.2.1.1.4 Edge-Edge FEAtUre TSt ...cciiiciiie e cetee ettt et e s e e e e bre e e e sbae e s e nareeas 9
5.2.1.1.5 Edge-Triangle FEature TStcccciciiiiiieiiee e cctee ettt eree e erbre e s e ebee e e e sbae e e e aaeeas 9
5.2.1.1.6 Triangle-Triangle FEature teSt.....ccccooiiiiiiie e e e 10

5.2.2 Yo] YT 14 o IR 10
5.2.3 Y Fq o IRV 2= T SRR 10
5.3 RESOIUTION ...t sttt et e b e s b st et e b e e sbeesaeesanesane e b e ereenes 10
53.1 SOTE-SOTE .ttt et e sane e 11
53.2 SOTE-RIIT ..ttt sttt 12
5.3.3 RIGIA-RIGIA ...veeteeetieee ettt sttt b e st et et e e be e sat e st e sabeebeebeennas 12
RESUIES .ttt ettt e e st e s bt e e s b e e e s be e e s ab e e st e e e be e e s be e e ehe e e eareeeneeesareeenanes 12
6.1 SYStEM SPECIHTICALIONS. .. uiiiiiiii e e e e e e e e e e e e e raar e e e e e eeas 12
6.2 LCT=To] 1 1=] d oV =T £ T T TP U U TP 12

2 | All content © 2009 DigiPen (USA) Corporation, all rights reserved.

6.3 BENCNIMAIKS. ..ce ittt ettt e s ettt e e st e e s bt e e st e e sabe e e bt e e s be e e sabeesareeeaneeesbeeeane 12
6.4 PreSSUIre IMIOTE]eieeeeee ettt st sa e st e st e e s be e e sabe e sabeesneeesabeeenns 13
6.5 COlliSION DELECLION ...ttt ettt s b e sttt e e b e b e sbe e sat e et e e nbeesaeesanenas 13
7 FULUIE RESEAICI ..ttt et et s e sttt et e b e b e e s bt e et e et e ebeesbeesbeesanenas 14
8 WOIKS CITOA. ..ottt sttt ettt e b e s bt s et st et e bt e s bee s bt e eme e et e enbeesbeenbeesanenas 14

3 | All content © 2009 DigiPen (USA) Corporation, all rights reserved.

1 Abstract

In this paper | wish to present a method for simulating soft body objects in real time using a
combination of springs and internal pressure as well as integrating with rigid body systems already
prevalent in video games and related simulations. | will also present a method for performing efficient
collision detection between deforming soft-body objects as well as the related impulse based response.
Additionally | will propose a basic collision detection algorithm between soft and rigid objects as well as
realistic and believable impulse based collision response in the soft/rigid interface. Using these
impulses, | will provide a method for simulating static friction in the soft body simulation.

2 Introduction/Related Work

My goal for this simulation was to realistically model soft-body objects in real-time interactive
simulations such as video games. On top of providing a model for soft-body objects, | needed to get the
simulation to run as quickly as possible on modern hardware, to provide a real-time solution for collision
detection, and to develop a method for interacting with rigid-body objects already prevalent throughout
related simulations.

The idea of using a pressure model for soft body objects was proposed in Pressure Model of Soft
Body Simulation (1). This served as an excellent starting point, but the published paper did not detail
the areas of volume calculation and collision detection. In both of these areas, they elected to restrict
themselves to bounding volumes for which the volume was already known.

To more accurately calculate the volume while maintaining efficiency, | referred to the paper
Efficient Feature Extraction For 2D/3D Objects in Mesh Representation (2) in which Zhang and Chen
proposed a fast and iterative method for computing the volume. Additionally | used the technique of
Particle-based Collision Detection (3) which provided a basic collision detection algorithm similar to V-
clip (4) that worked well with concave objects. | then expanded this algorithm to take into account
features other than vertices and use geometry intersection algorithms to get more accurate collision
detection and responses.

3 Soft Body Simulation

3.1 Soft Model

Soft body objects are represented as a point-mass membrane completely enclosing a finitely sized
volume similar to (1). The behavior of the object is primarily dependent on the spring force and the
pressure force.

3.1.1 Surface Spring Network
The surface membrane consists of various triangles with a point mass at each vertex. The

springs are all governed by Hooke’s Law, which states that Fx) = k(x — xo)fi where k is the spring
constant, x is the current length, x is the resting length, and 71 is the direction of the spring.

4 | All content © 2009 DigiPen (USA) Corporation, all rights reserved.

3.1.2 Pressure Simulation

Pressure is simulated using the law of ideal gases which states that PV = nRT where p is the
pressure, V is the volume, n is the number of moles, R is the universal gas constant, and T is the
absolute temperature. The pressure force is expressed as Fp) = PAiA, with P = V~InRT, fi is the surface
normal, and A is the area the pressure is being applied to.

For this simulation, 7 is the normal at the surface. In this case | use the normal of each triangle
on the surface. Given a triangle defined by the counter clockwise vertices a, b, and c, | can define two

. N . 1
edgesey = b —aand e; = ¢ —a. The normal isthenfi = e; X e; and the areais A = 2 lleg X eq]l.

Finally, the volume is calculated iteratively for each mesh (2). To do this, | consider the
tetrahedron formed between each triangle on the mesh and a random point in space, which | choose as
the origin for simplicity. The volume of this tetrahedron is knownas V' = %|—cxbyaz + bycya, +
cxayb, — aycyb, — bya,c, + a,b,c,|. If the chosen point lies outside of the mesh (as is likely), this
volume is added to the running total if the triangle’s normal faces the point, or subtracted from the total
if the normal faces away. Using the origin as the fourth point in the tetrahedron, this can be done by
taking the dot product of the surface normal and the position vector of any vertex on the triangle. In
practice, rather than taking the absolute value of the volume and changing its sign based on orientation
it is possible to get identical results by simply negating the volume in each step. For example:

1
Viotat = Viotar — g(—cxbyaz + bycya, + crayb, — acc b, — byayc, + acbyc,).

As a final point of interest, if the vertices of the mesh are not evenly distributed some edges
may appear stiffer than others or the model may appear lopsided. Changing the spring force through
the model will result in an unstable simulation. This is known as the stiff problem resulting from the

springs failing to oscillate in frequency with one another. Instead, scaling the pressure force by
number of springs

, before applying the pressure to each vertex improves the visual issues this may
average number of springs

cause (5).

3.1.3 Damping

| found that having many stiff springs could quickly become unstable even running RK4 at 60Hz. |
therefore have two damping variables to correct this behavior expressed as p = p, + pi. pg is the
global damping applied to all objects in the simulation, and py, is scaled based on the strength of the

spring by pi = (1 — py) # where k is the spring constant. The (1 — p,) term ensures that p never

ax

exceeds 1. Using this damping, the final velocity of a point under the effects of a spring is B =9 pu.
In my simulation | found that a suitable p, is 0.01 and a suitable k,;, . is 400 through trial and error,
although it should be noted that my springs rarely exceed k = 300.

3.1.4 Friction
To calculate friction, | first wait for a vertex of the soft object to drop below the ground plane.
The impulse, j, is computed from the collision and move the vertex back to the surface. The object’s

5 | All content © 2009 DigiPen (USA) Corporation, all rights reserved.

velocity is then projected to the ground plane as vy = ¥ — At - ¥ - fi. Friction is therefore calculated as
v = —utymaxij, 0) where is the friction coefficient, and is added to the final velocity.

3.2 Runge-Kutta 4

| use a Runge-Kutta 4 integrator to compute the velocity in each frame, followed by an implicit
Euler integrator for position. | first get an estimation of acceleration by incrementing the velocity by the
acceleration during the time step and use that to update the position so that | could calculate the
pressure and spring forces. This acceleration is then stored and | repeated the process. If F(x) is the
total force at position x, m is mass, and x, and v, are the starting position and velocity respectively,
then the whole process proceeds as:

__ F(xp) _ apt _ vyt
ag = m ,171—170+ Z,X1—XO+ 5

_ FGxn) _ agt _ vyt
a, = m ,172—170+ Z,XZ—X0+ 5

F(x3)
a, = m2 , V3 = D +a2t,x3 =x0+v3t
F(x3)
as =
m
. . . ag+az+2(q1+a . "
The final acceleration is then a = %@12). Velocity follows as v = v, + at, and position as

X = X + vt. This integrator must be applied to each vertex in the soft body object independently and
every vertex in any single object must be acted on at the same time. For example, if one vertex is at its
X position and another at its x3 position, then the spring and pressure forces will be computed
incorrectly between these vertices resulting in visibly incorrect behavior.

4 Rigid Body Simulation

4.1 Rigid Model

<> —
Every rigid object in my simulation stores a mass m, inertia I and inverse inertia I ~! tensors, a
quaternion orientation g, velocity ¥, angular velocity pseudo-vector @, and position p. Since | know all

[W? + h?) 0 0 1
my rigid objects are cubes, Tis precomputed as T= | 0 % (h? +d?) 0 I where
m. 2 2
[0 0 = W?+h?)|

w, h, and d are the width, height, and depth respectively. The inverse then can be easily calculated by
taking the reciprocal of each diagonal element.

The rigid body objects update is implemented using an Euler-Cromer integrator for both orientation
and position. The update loop for position with an acceleration of d then becomes v+= at, p+= vt.
For quaternions | compute an axis of rotation as @ and a rotation amount as 8 = ||@||t, and update g as

o =[eos(9).n)]

6 | All content © 2009 DigiPen (USA) Corporation, all rights reserved.

5 Collision Detection

5.1 Broad Phase

Broad phase collision detection is performed using bounding spheres. Although not ideal, a
reasonably fitted sphere can be computed by finding the axis alignhed bounding box of a mesh and
constructing a sphere about the center of the box that encloses all corners.

5.2 Narrow Phase

5.2.1 Soft Vs. Soft

Soft objects present an interesting challenge with regard to collision detection. | chose to
implement a closest features algorithm that attempts to find the extrema on objects using a particle
system (3) that loosely imitates the electromagnetic force.

These particles are initially randomly distributed across the surface of each soft body and are
limited to resting in the middle of a surface feature. In the case of this simulation, a particle may only
rest on a vertex, the center of an edge, or the center of a surface triangle. The physical position of each
particle can then be calculated by averaging the positions of the vertices belonging to the feature the
particle is resting on.

To update these particles and eventually find the closest features, | calculate the cost of a
particle to stay where it is as well as the cost to move to each neighboring feature. The cost is calculated

by first incrementing the cost by > for each particle belonging to the same object as the particle |

distanc e

am preparing to move, and then decremented by > for each particle belonging to the object

distanc e
being collided with. The particle then migrates to the cheapest neighboring feature, or stays where it is

if the current location is currently the cheapest.

Once the particles find stable positions, | iterate through each pair and first determine if they
are close enough to be considered colliding before performing a feature intersection test.

In my system, each object is allocated a pre-set number of particles. | chose to generate 1/8" as
many particles as an object had vertices, although ideally there should be enough particles to place one
on each convex feature of an object. | store a separate list of particles for each pair of soft body objects
to minimize the number of iterations when updating the particles since the closest features of any two
objects rarely change between frames.

Additionally, | found that the force attracting the particles should be twice as strong as the force
repelling them. This seems counter-intuitive at first as it would seem that it is desirable to force the
particles to spread out to prepare for future collisions outside the current region of interest. In practice,
having the particles coalesce causes more collisions to be detected earlier minimizing the amount of
visible interpenetration. Additionally, | only artificially separate a collision between a vertex and a
triangle, so having the particles congregate increases the chance of this particular interaction to
manifest itself and leads to a believable visual response.

7 | All content © 2009 DigiPen (USA) Corporation, all rights reserved.

Unfortunately the particle update cycle is a slow process, so it would therefore be ideal to
minimize the number of times it executes. In practice, a particle usually does not move to a new feature
between frames so terminating the update loop if no particles move leads to a significant speed
improvement. Unfortunately, it is common for a few particles to oscillate between features and is
therefore necessary to terminate if fewer than four particles are moving (this number was determined
purely through experimentation). Since this simulation is intended to be used in a real-time simulation,
it is reasonable to restrict the number of particle refinement loops even farther since there will be a very
small amount of time between frames. | find that a maximum of 10 updates per frame yields accurate
closest feature results before the objects are actually interpenetrating.

5.2.1.1 Feature Tests

Once two features are paired, the type of feature the particle is resting on is determined and
used for collision tests. Each feature has a skin thickness defining how far away they can be from each
other and still be considered in collision. In my simulation | found a thickness of 0.5 units worked best
(my basic objects had a starting radius of 3 units before inflating). For all of my tests | always choose the
normal of the highest order feature for collision resolution. If both features are identical (i.e. two
triangles), | use the normal of the second one purely for simplicity reasons.

5.2.1.1.1 Vertex-Vertex Feature Test
Two vertices are considered in collision if they are closer than 2 - Skin Thickness from each

other. The normal of collision is calculated by averaging the normal of all the neighboring triangles.

5.2.1.1.2 Vertex-Edge Feature Test

Vertex-edge collision is treated as sphere vs. capsule. Given the two endpoints of the edge e,
and e; as well as the vertex ¥, | can define the edge’s axis as € = e; — e, and the projection of the
vertex to this point as v, = (¥ — ep) - € with the corresponding position of this projection defined as

v, = e + v, - €. Next, | compute the distance of the vertex from this projected point as d = ||17 - v_p)|

and can break out if this distance is greater than the sum of the skin thicknesses. If the vertex is close
enough, | first check to see if 0 < v, < |||l which would indicate that the projection is placed within the

’

finite bounds of the cylinder. If this fails | fall back to a vertex-vertex test for each edge endpoint to take
into account the capsule’s caps.

The normal is calculated at the edge by linearly interpolating between the normals at each end
point by v,. It would be ideal to simply average the normals of the two triangles connected at this edge.

5.2.1.1.3 Vertex-Triangle Feature Test

For vertex-triangle collision tests | check the distance of the vertex from the triangle and if it is
close enough | check to see if the vertex projected to the triangle lies within the triangle. If not, | fall
back to three edge-edge tests then three vertex-vertex tests. The normal of the collision can trivially be
taken as the triangle’s normal.

The algorithm is given a triangle defined by the three counter-clockwise vertices t_(;, t—f, and t?,
the triangle’s normal which can easily be calculated as 71 = (t—i - t—(;) x (t; — to), and the colliding

8 | All content © 2009 DigiPen (USA) Corporation, all rights reserved.

vertex ¥. A projected vertex can trivially be found as v, = ¥ — (¥ — t,) - i with the distance from the

triangle easily calculated as d = |(17 —t0) - ﬁ|

If the calculated d is close enough for collision, | then perform a point in triangle test with v_p’.

For this, | compute six more vectors:

Qu
Il
St

(Sl
I
<
|
|

i=1t,-7,
p=bx?é
Gg=2cxa
P=dxbh

A point is then considered to be inside a triangle if and only if p- g < 0Oand p - 7 < 0.

5.2.1.1.4 Edge-Edge Feature Test
For edge-edge tests | actually check for a line segment colliding with a capsule of thickness
2 - Skin Thickness, and fall back to vertex vertex collision if this fails. Therefore, | consider the line
segment defined by vertices Aand B colliding with the capsule defined by vertices P and (_j and capsule
radius ¥ = 2 - Skin Thickness. | further compute i = B — Am=A—P andd = (_j — P. Ithen need
—b+VbZ—ac
a

to solve the quadratic equation t = (note, the term b was preceded with a 2 which factored

- 2 - -
out the 4 in 4ac and 2 in the denominator) with a = (d X ﬁ) , b= (d X 171’) -(dxmn),andc =

- 2 -
(d X rTi) —1r2d?. If there are no real roots then the edges are not in contact, if there is one real root
then that is considered the closest point to the capsule, otherwise | consider the closest point to be in
the middle of the two real solutions for t. After finding this point, | can plug it into the normal vertex-

edge test.

5.2.1.1.5 Edge-Triangle Feature Test
In edge-triangle collision detection, | first try to intersect a line segment representing the edge

with the plane of the triangle and plug the result into my vertex-triangle test. If the closest point is
outside the bounds of the edge, | take the closest endpoint and plug that into the vertex-triangle test. |

ignore the case of an edge being perfectly parallel to the triangle.

| consider the triangle defined by the points t;, £;, and £, with normal 7i = (t_{ - t_(;) X (t; —
t,), and the edge defined by endpoints ey and e;. Then the time of intersection is t = %, gives
1=¢€0)"

the positionas ¥ = e; + t - (e —). Ift < 0 then | use g for collision and similarly if t > 1 | use e;.

9 | All content © 2009 DigiPen (USA) Corporation, all rights reserved.

5.2.1.1.6 Triangle-Triangle Feature test
For triangle-triangle tests, | simply run every edge and every vertex of one triangle against the
other and vice versa until either I've exhausted every feature or I've found a collision.

5.2.2 Soft Vs. Rigid

For soft rigid collision resolution | only consider vertex intersections. | perform the collision
detection in two stages, first checking to see if any vertex in the soft body object lies within the rigid
then again checking if a vertex of the rigid body object lies within the soft object. In both cases, | can
find a minimum penetration and the corresponding triangle, and use that triangle’s normal for the
collision normal.

Checking for a soft vertex in a rigid object is trivial since the rigid object is guaranteed to be
convex in my simulation. Since every triangle stores an outward-facing normal 7i;, a point on the
triangle t;(this can be any one of the vertices), and given a colliding vertex v, a vertex can be said to be
inside an object if for every triangle in the rigid object (ﬁ — f{) - 7; < 0. The minimum collision depth is

just the largest scalar value from (ﬁ — ?{) - 71; if the intersecting test passes for all triangles.

The rigid object in soft body test is slightly more complicated. | take advantage of a feature of
the Jordan Curve Theorem (6), mainly that if | cast a ray from a point in any direction and it intersects an
even number of polygons then that point lies within the object being tested, otherwise it lies outside.

| therefore loop through each vertex of the rigid body object v; and test against each triangle
defined by vertices tj__), %’, and %’ as well as triangle normal 7i;. To reduce the computational

0
complexity, | choose a ray direction of d = [0] The point at which this ray intersects the triangle’s
1

(tjo—o)
d-
calculationwithd =t —p,b=t, —p,C=t, — P, B =b X ¢ §=¢CXd,and7 = d x b and a point

planeisp =7, +t- d where t = . This point can then be plugged into the point in triangle

considered in the triangleif p-¢g < Oandp -7 < 0.

5.2.3 Rigid Vs. Rigid

Rigid vs. rigid collision uses the separating axis test to determine collisions. The separating axis
test simply loops through a preset list of axes and doesn’t return a collision if there is any axis on which
the two objects do not overlap. For axes, | use each triangle normal of each object, then the cross
product between every edge on one object against every edge on the second. The separating axis test
could be further improved by ignoring redundant and co-planar faces.

5.3 Resolution
Collision resolution in every case is implemented using impulses. The general case impulse is

. —(e+1) Vg A . - .
calculated as j = — (e+1) Dret] where ¢ is the elasticity of the collision,

L T [(1g™ Goxd) o+ (17 i))<

Vrel = Vo — Vg, i is the collision normal from the narrow phase, Vg ; each object’s velocity, IO__% each

object’s inverse inertia, and FOI’ each object’s vector from the center of mass to the point of collision.

10 | All content © 2009 DigiPen (USA) Corporation, all rights reserved.

This impulse is then used to calculate each object’s linear and angular velocity change as:

. _jA
Avy =—
my
_j.n
A'Ulz
my

Awy = [ro x (- A)] - It
Aw; =[r x (G -A)]- I

For all rigid objects, | store the impulse in the object’s local coordinate system. In order to ensure
correct behavior of rigid objects, the inertia must be translated into world coordinates. | simply use the

model-world rotation matrix R and set =1 = RI7IRT (I~ because impulse uses the inverse inertia).

5.3.1 Soft-Soft

Collisions between soft objects present a particularly interesting issue. Objects interpenetrating
but moving away from each other can create an impulse actually pulling them towards each other.
Under normal circumstances, this can trivially be avoided by ignoring impulses that are directed away
from the object’s center compared to the collision normal. This will not work in cases such as an object
colliding with the center of the torus in my demo, since all valid impulses should be pointing towards the
center along the collision vector.

To resolve this, | first impose a restriction to the collision normals specifying that each normal
must point away from a higher order face (triangle being the highest) and towards a lower-order face
(vertex being the lowest). If both features are of the same order then | specify that the normal must
point away from the second object passed into my resolution step. This should come by default from
the narrow phase collision detection algorithms | mentioned above. | can then specify that j must
always be positive. Since j is multiplied with 71, the impulse applied to the first object should always be
in the positive 7 direction and therefore automatically exclude any impulses applied in the wrong
direction. A nice feature, though, of pure soft collisions is that there is no rotation component to the

. . . . - . —(e+tDv A
impulse so the impulse equation can be simplified to j = w

mop mi

Similarly, objects may already be intersecting when a collision is detected. It would then be
imperative to move intersecting features so that the objects are no longer intersecting by the end of the
collision resolution step. | found that the easiest solution is just to move the vertex away from the
triangle by the specified skin thickness. Thanks to the spring force, | find that this results in visibly
correct behavior of the simulation when a large number of potential intersection is detected, which is
one of the reasons why | weight the attraction force of particles stronger than the repelling force. |
chose to resolve a collision with a triangle since there is a physical plane and trivial axis (the normal) to
separate along. Further, | chose to use the vertex instance since in a vertex triangle intersection the
vertex is guaranteed to lie within the Veroni region of the triangle. An edge or triangle may have

11 | All content © 2009 DigiPen (USA) Corporation, all rights reserved.

endpoints far outside the range of another triangle which results in visibly incorrect behavior if they are
simply moved along the triangle normal.

For impulse based collision resolution it is still necessary to provide a mass to compute an
impulse. | use sum of the vertex masses for each object involved. Therefore, a triangle’s mass is the
sum of all three of its vertices, an edge’s the sum of each endpoint’s mass, and a single vertex only
provides its own mass. It may then take several frames to fully reverse the velocity of a soft body, but
this should be expected.

5.3.2 Soft-Rigid

Similar to soft-soft intersections, | only consider the vertices in collision on the soft body object
when computing the impulse, but | do use the mass of the entire rigid object. This means that if a soft
and rigid body have the same mass, then the rigid object will bounce less and the vertices under
collision on the soft object bounce more, but the pressure force counteracts this behavior leading to a
realistic interaction. Since all collisions are essentially vertex triangle in nature, | correct
interpenetration the same way | would in triangle vertex collision in soft-soft interactions.

5.3.3 Rigid-Rigid

| use the axis of minimal penetration as my collision axis. | correct for interpenetration by simply
moving the objects away from each other by the collision depth. | do not restrict the impulse direction
when resolving rigid-rigid collisions.

6 Results

6.1 System Specifications
e Amd X2 4600+
e 2GB DDR2 RAM
e nVidia GeForce 8600 GTS

6.2 Geometry Tests
e Sphere: 8 stacks x 8 slices
e Torus: 16 stacks x 16 slices
e Cube: 6 faces, 2 triangles each

6.3 Benchmarks

All benchmarks attained by visually monitoring a framerate counter updated every frame.

e Single soft body sphere: ~60fps
e Single soft body torus: ~45fps
e Two soft body spheres: ~50fps
o Incontact: ~30fps
e Three soft spheres: ~30fps
o incontact: ~20fps

12 | All content © 2009 DigiPen (USA) Corporation, all rights reserved.

e Soft sphere and torus in constant contact (sphere in middle): ~20fps
e Soft torus with four rigid cubes in middle: ~18fps

6.4 Pressure Model
Sphere at n=100 k=150 (left) and n=1 k=10 (right).

% Phy399 Soft Body Smulation'SL06341fps » [[|| 52 Phy399 Sok Body Simulation50.38207fps Slo e

[(Be Gt e Be fr Hop

Wireframe

Wireframe

Add Torus Add Tors

Add Bigpd Object Add Rigd Obgect |

A4 Soht Obyect Add Sob Object

6.5 Collision Detection

Two soft spheres in collision (top left) displaying collision particles, three soft spheres and a soft torus in
contact (top right), three spheres soft spheres, a soft torus, and four rigid cubes (bottom left) displaying
collision particles, and a soft cat model colliding with a soft sphere (bottom right).

5 Phy399 Soft Body Simulation11.10219fps. 1 [| [52 Phy399 Soft Body Simulation27.1878fps (=S e

13 | All content © 2009 DigiPen (USA) Corporation, all rights reserved.

7 Future Research

Some immediate possible improvements include better procedural generation of collision points,
accurately computing the number of particles required to cover the entire convex surface of an object
(i.e. center of the torus) or scaling the number of particles based on various metrics such as the number
of particles that actually are generating intersections. Additional areas of interest would be creating a
spatial subdivision algorithm that could be implemented in real-time to augment or replace the particle
based system and alternative particle distribution functions to ensure collisions are not missed when
particles coalesce.

Other physically interesting areas to explore would be simulating viscosity, allowing for physical
splitting and joining of soft bodies, and the simulation of various surface properties such as friction
between soft bodies.

8 Works Cited

1. Matyka, Maciej and Ollila, Mark. Pressure Model of Soft Body Simulation. [Online] November 20,
2003. [Cited: April 13, 2009.] http://www.ep.liu.se/ecp/010/007/ecp01007.pdf.

2. Zhang, Cha and Chen, Tsuhan. Efficient Feature Extraction For 2D/3D Objects in Mesh
Representation. [Online] May 18, 2001. [Cited: April 13, 2009.]
http://amp.ece.cmu.edu/Publication/Cha/icip01_Cha.pdf.

3. Particle-based Collision Detection. Savchenko, Vladimir, et al. Spain, Granada : s.n., 2003. Short
papers proceedings of Eurographics EG2003.

4. Mirtich, Brian. V-Clip: Fast and Robust Polyhedral. Mitsubishi Electric Research Laboratories. [Online]
December 1997. [Cited: April 25, 2009.] http://www.merl.com/papers/docs/TR97-05.pdf.

5. A Fluid Based Soft-Object Model. Nixon, Daniel and Lobb, Richard. July/August 2002, IEEE Computer
Graphics and Applications, vol. 22, no.4, pp. 68-75.

6. Ericson, Christer. Real Time Collision Detection. Real Time Collision Detection. San Francisco : Morgan
Kaufmann Publishers, 2005, 5.4, p. 203.

14 | All content © 2009 DigiPen (USA) Corporation, all rights reserved.

