
1 All content © 2009 DigiPen (USA) Corporation, all rights reserved.

Real-Time Soft Body Simulation Using an
Approximation of the Pressure Force

Patrick Martin

2 All content © 2009 DigiPen (USA) Corporation, all rights reserved.

Table of Contents
1 Abstract ... 4

2 Introduction/Related Work ... 4

3 Soft Body Simulation ... 4

3.1 Soft Model ... 4

3.1.1 Surface Spring Network .. 4

3.1.2 Pressure Simulation .. 5

3.1.3 Damping .. 5

3.1.4 Friction .. 5

3.2 Runge-Kutta 4 ... 6

4 Rigid Body Simulation ... 6

4.1 Rigid Model ... 6

5 Collision Detection .. 7

5.1 Broad Phase .. 7

5.2 Narrow Phase .. 7

5.2.1 Soft Vs. Soft ... 7

5.2.1.1 Feature Tests ... 8

5.2.1.1.1 Vertex-Vertex Feature Test ... 8

5.2.1.1.2 Vertex-Edge Feature Test ... 8

5.2.1.1.3 Vertex-Triangle Feature Test .. 8

5.2.1.1.4 Edge-Edge Feature Test .. 9

5.2.1.1.5 Edge-Triangle Feature Test ... 9

5.2.1.1.6 Triangle-Triangle Feature test ... 10

5.2.2 Soft Vs. Rigid ... 10

5.2.3 Rigid Vs. Rigid .. 10

5.3 Resolution ... 10

5.3.1 Soft-Soft .. 11

5.3.2 Soft-Rigid ... 12

5.3.3 Rigid-Rigid ... 12

6 Results ... 12

6.1 System Specifications .. 12

6.2 Geometry Tests ... 12

3 All content © 2009 DigiPen (USA) Corporation, all rights reserved.

6.3 Benchmarks ... 12

6.4 Pressure Model ... 13

6.5 Collision Detection .. 13

7 Future Research .. 14

8 Works Cited ... 14

4 All content © 2009 DigiPen (USA) Corporation, all rights reserved.

1 Abstract
In this paper I wish to present a method for simulating soft body objects in real time using a

combination of springs and internal pressure as well as integrating with rigid body systems already

prevalent in video games and related simulations. I will also present a method for performing efficient

collision detection between deforming soft-body objects as well as the related impulse based response.

Additionally I will propose a basic collision detection algorithm between soft and rigid objects as well as

realistic and believable impulse based collision response in the soft/rigid interface. Using these

impulses, I will provide a method for simulating static friction in the soft body simulation.

2 Introduction/Related Work
My goal for this simulation was to realistically model soft-body objects in real-time interactive

simulations such as video games. On top of providing a model for soft-body objects, I needed to get the

simulation to run as quickly as possible on modern hardware, to provide a real-time solution for collision

detection, and to develop a method for interacting with rigid-body objects already prevalent throughout

related simulations.

The idea of using a pressure model for soft body objects was proposed in Pressure Model of Soft

Body Simulation (1). This served as an excellent starting point, but the published paper did not detail

the areas of volume calculation and collision detection. In both of these areas, they elected to restrict

themselves to bounding volumes for which the volume was already known.

To more accurately calculate the volume while maintaining efficiency, I referred to the paper

Efficient Feature Extraction For 2D/3D Objects in Mesh Representation (2) in which Zhang and Chen

proposed a fast and iterative method for computing the volume. Additionally I used the technique of

Particle-based Collision Detection (3) which provided a basic collision detection algorithm similar to V-

clip (4) that worked well with concave objects. I then expanded this algorithm to take into account

features other than vertices and use geometry intersection algorithms to get more accurate collision

detection and responses.

3 Soft Body Simulation

3.1 Soft Model
Soft body objects are represented as a point-mass membrane completely enclosing a finitely sized

volume similar to (1). The behavior of the object is primarily dependent on the spring force and the

pressure force.

3.1.1 Surface Spring Network

The surface membrane consists of various triangles with a point mass at each vertex. The

springs are all governed by Hooke’s Law, which states that 𝐹𝑥 = 𝑘 𝑥 − 𝑥0 𝑛 where 𝑘 is the spring

constant, 𝑥 is the current length, 𝑥0 is the resting length, and 𝑛 is the direction of the spring.

5 All content © 2009 DigiPen (USA) Corporation, all rights reserved.

3.1.2 Pressure Simulation

Pressure is simulated using the law of ideal gases which states that 𝑃𝑉 = 𝑛𝑅𝑇 where 𝑝 is the

pressure, 𝑉 is the volume, 𝑛 is the number of moles, 𝑅 is the universal gas constant, and 𝑇 is the

absolute temperature. The pressure force is expressed as 𝐹𝑝 = 𝑃𝑛 𝐴, with 𝑃 = 𝑉−1𝑛𝑅𝑇, 𝑛 is the surface

normal, and 𝐴 is the area the pressure is being applied to.

For this simulation, 𝑛 is the normal at the surface. In this case I use the normal of each triangle

on the surface. Given a triangle defined by the counter clockwise vertices 𝑎, 𝑏, and 𝑐, I can define two

edges 𝑒0 = 𝑏 − 𝑎 and 𝑒1 = 𝑐 − 𝑎. The normal is then 𝑛 = 𝑒0 × 𝑒1 and the area is 𝐴 =
1

2
 𝑒0 × 𝑒1 .

Finally, the volume is calculated iteratively for each mesh (2). To do this, I consider the

tetrahedron formed between each triangle on the mesh and a random point in space, which I choose as

the origin for simplicity. The volume of this tetrahedron is known as 𝑉 =
1

6
 −𝑐𝑥𝑏𝑦𝑎𝑧 + 𝑏𝑥𝑐𝑦𝑎𝑧 +

 𝑐𝑥𝑎𝑦𝑏𝑧 − 𝑎𝑥𝑐𝑦𝑏𝑧 − 𝑏𝑥𝑎𝑦𝑐𝑧 + 𝑎𝑥𝑏𝑦𝑐𝑧 . If the chosen point lies outside of the mesh (as is likely), this

volume is added to the running total if the triangle’s normal faces the point, or subtracted from the total

if the normal faces away. Using the origin as the fourth point in the tetrahedron, this can be done by

taking the dot product of the surface normal and the position vector of any vertex on the triangle. In

practice, rather than taking the absolute value of the volume and changing its sign based on orientation

it is possible to get identical results by simply negating the volume in each step. For example:

𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑡𝑜𝑡𝑎𝑙 −
1

6
(−𝑐𝑥𝑏𝑦𝑎𝑧 + 𝑏𝑥𝑐𝑦𝑎𝑧 + 𝑐𝑥𝑎𝑦𝑏𝑧 − 𝑎𝑥𝑐𝑦𝑏𝑧 − 𝑏𝑥𝑎𝑦𝑐𝑧 + 𝑎𝑥𝑏𝑦𝑐𝑧).

As a final point of interest, if the vertices of the mesh are not evenly distributed some edges

may appear stiffer than others or the model may appear lopsided. Changing the spring force through

the model will result in an unstable simulation. This is known as the stiff problem resulting from the

springs failing to oscillate in frequency with one another. Instead, scaling the pressure force by
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑟𝑖𝑛𝑔𝑠

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑟𝑖𝑛𝑔𝑠
 before applying the pressure to each vertex improves the visual issues this may

cause (5).

3.1.3 Damping

I found that having many stiff springs could quickly become unstable even running RK4 at 60Hz. I

therefore have two damping variables to correct this behavior expressed as 𝜌 = 𝜌𝑔 + 𝜌𝑘 . 𝜌𝑔 is the

global damping applied to all objects in the simulation, and 𝜌𝑘 is scaled based on the strength of the

spring by 𝜌𝑘 = (1 − 𝜌𝑔)
𝑘

𝑘𝑚𝑎𝑥
 where 𝑘 is the spring constant. The (1 − 𝜌𝑔) term ensures that 𝜌 never

exceeds 1. Using this damping, the final velocity of a point under the effects of a spring is 𝑣 ′ = 𝑣 − 𝜌𝑣 .

In my simulation I found that a suitable 𝜌𝑔 is 0.01 and a suitable 𝑘𝑚𝑎𝑥 is 400 through trial and error,

although it should be noted that my springs rarely exceed 𝑘 = 300.

3.1.4 Friction

To calculate friction, I first wait for a vertex of the soft object to drop below the ground plane.

The impulse, 𝑗, is computed from the collision and move the vertex back to the surface. The object’s

6 All content © 2009 DigiPen (USA) Corporation, all rights reserved.

velocity is then projected to the ground plane as 𝑣∥ = 𝑣 − 𝑛 ∙ 𝑣 ∙ 𝑛 . Friction is therefore calculated as

𝑣𝑓 = −𝜇𝑣∥ max(𝑗, 0) where 𝜇 is the friction coefficient, and is added to the final velocity.

3.2 Runge-Kutta 4
I use a Runge-Kutta 4 integrator to compute the velocity in each frame, followed by an implicit

Euler integrator for position. I first get an estimation of acceleration by incrementing the velocity by the

acceleration during the time step and use that to update the position so that I could calculate the

pressure and spring forces. This acceleration is then stored and I repeated the process. If 𝐹(𝑥) is the

total force at position 𝑥, 𝑚 is mass, and 𝑥0 and 𝑣0 are the starting position and velocity respectively,

then the whole process proceeds as:

𝑎0 =
𝐹 𝑥0

𝑚
, 𝑣1 = 𝑣0 +

𝑎0𝑡

2
, 𝑥1 = 𝑥0 +

𝑣1𝑡

2

𝑎1 =
𝐹 𝑥1

𝑚
, 𝑣2 = 𝑣0 +

𝑎1𝑡

2
, 𝑥2 = 𝑥0 +

𝑣2𝑡

2

𝑎2 =
𝐹 𝑥2

𝑚
, 𝑣3 = 𝑣0 + 𝑎2𝑡, 𝑥3 = 𝑥0 + 𝑣3𝑡

𝑎3 =
𝐹 𝑥3

𝑚

The final acceleration is then 𝑎 =
𝑎0+𝑎3+2(𝑞1+𝑎2)

6
. Velocity follows as 𝑣 = 𝑣0 + 𝑎𝑡, and position as

𝑥 = 𝑥0 + 𝑣𝑡. This integrator must be applied to each vertex in the soft body object independently and

every vertex in any single object must be acted on at the same time. For example, if one vertex is at its

𝑥0 position and another at its 𝑥3 position, then the spring and pressure forces will be computed

incorrectly between these vertices resulting in visibly incorrect behavior.

4 Rigid Body Simulation

4.1 Rigid Model

Every rigid object in my simulation stores a mass 𝑚, inertia 𝐼 and inverse inertia 𝐼−1 tensors, a

quaternion orientation 𝑞, velocity 𝑣 , angular velocity pseudo-vector 𝜔 , and position 𝑝 . Since I know all

my rigid objects are cubes, 𝐼 is precomputed as 𝐼 =

𝑚

12
(𝑤2 + 2) 0 0

0
𝑚

12
(2 + 𝑑2) 0

0 0
𝑚

12
(𝑤2 + 2)

 where

w, h, and d are the width, height, and depth respectively. The inverse then can be easily calculated by

taking the reciprocal of each diagonal element.

The rigid body objects update is implemented using an Euler-Cromer integrator for both orientation

and position. The update loop for position with an acceleration of 𝑎 then becomes 𝑣 += 𝑎 𝑡, 𝑝 += 𝑣 𝑡.

For quaternions I compute an axis of rotation as 𝜔 and a rotation amount as 𝜃 = 𝜔 𝑡, and update 𝑞 as

𝑞′ = cos
𝜃

2
 , sin

𝜃

2
 𝜔 ∙ 𝑞.

7 All content © 2009 DigiPen (USA) Corporation, all rights reserved.

5 Collision Detection

5.1 Broad Phase
Broad phase collision detection is performed using bounding spheres. Although not ideal, a

reasonably fitted sphere can be computed by finding the axis aligned bounding box of a mesh and

constructing a sphere about the center of the box that encloses all corners.

5.2 Narrow Phase

5.2.1 Soft Vs. Soft

Soft objects present an interesting challenge with regard to collision detection. I chose to

implement a closest features algorithm that attempts to find the extrema on objects using a particle

system (3) that loosely imitates the electromagnetic force.

These particles are initially randomly distributed across the surface of each soft body and are

limited to resting in the middle of a surface feature. In the case of this simulation, a particle may only

rest on a vertex, the center of an edge, or the center of a surface triangle. The physical position of each

particle can then be calculated by averaging the positions of the vertices belonging to the feature the

particle is resting on.

To update these particles and eventually find the closest features, I calculate the cost of a

particle to stay where it is as well as the cost to move to each neighboring feature. The cost is calculated

by first incrementing the cost by
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐 𝑒2 for each particle belonging to the same object as the particle I

am preparing to move, and then decremented by
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐 𝑒2 for each particle belonging to the object

being collided with. The particle then migrates to the cheapest neighboring feature, or stays where it is

if the current location is currently the cheapest.

Once the particles find stable positions, I iterate through each pair and first determine if they

are close enough to be considered colliding before performing a feature intersection test.

In my system, each object is allocated a pre-set number of particles. I chose to generate 1/8th as

many particles as an object had vertices, although ideally there should be enough particles to place one

on each convex feature of an object. I store a separate list of particles for each pair of soft body objects

to minimize the number of iterations when updating the particles since the closest features of any two

objects rarely change between frames.

Additionally, I found that the force attracting the particles should be twice as strong as the force

repelling them. This seems counter-intuitive at first as it would seem that it is desirable to force the

particles to spread out to prepare for future collisions outside the current region of interest. In practice,

having the particles coalesce causes more collisions to be detected earlier minimizing the amount of

visible interpenetration. Additionally, I only artificially separate a collision between a vertex and a

triangle, so having the particles congregate increases the chance of this particular interaction to

manifest itself and leads to a believable visual response.

8 All content © 2009 DigiPen (USA) Corporation, all rights reserved.

Unfortunately the particle update cycle is a slow process, so it would therefore be ideal to

minimize the number of times it executes. In practice, a particle usually does not move to a new feature

between frames so terminating the update loop if no particles move leads to a significant speed

improvement. Unfortunately, it is common for a few particles to oscillate between features and is

therefore necessary to terminate if fewer than four particles are moving (this number was determined

purely through experimentation). Since this simulation is intended to be used in a real-time simulation,

it is reasonable to restrict the number of particle refinement loops even farther since there will be a very

small amount of time between frames. I find that a maximum of 10 updates per frame yields accurate

closest feature results before the objects are actually interpenetrating.

5.2.1.1 Feature Tests

Once two features are paired, the type of feature the particle is resting on is determined and

used for collision tests. Each feature has a skin thickness defining how far away they can be from each

other and still be considered in collision. In my simulation I found a thickness of 0.5 units worked best

(my basic objects had a starting radius of 3 units before inflating). For all of my tests I always choose the

normal of the highest order feature for collision resolution. If both features are identical (i.e. two

triangles), I use the normal of the second one purely for simplicity reasons.

5.2.1.1.1 Vertex-Vertex Feature Test

Two vertices are considered in collision if they are closer than 2 ∙ 𝑆𝑘𝑖𝑛 𝑇𝑖𝑐𝑘𝑛𝑒𝑠𝑠 from each

other. The normal of collision is calculated by averaging the normal of all the neighboring triangles.

5.2.1.1.2 Vertex-Edge Feature Test

Vertex-edge collision is treated as sphere vs. capsule. Given the two endpoints of the edge 𝑒0

and 𝑒1 as well as the vertex 𝑣 , I can define the edge’s axis as 𝑒 = 𝑒1 − 𝑒0 and the projection of the

vertex to this point as 𝑣𝑝 = (𝑣 − 𝑒0) ∙ 𝑒 with the corresponding position of this projection defined as

𝑣𝑝 = 𝑒0 + 𝑣𝑝 ∙ 𝑒 . Next, I compute the distance of the vertex from this projected point as 𝑑 = 𝑣 − 𝑣𝑝 ,

and can break out if this distance is greater than the sum of the skin thicknesses. If the vertex is close

enough, I first check to see if 0 ≤ 𝑣𝑝 ≤ 𝑒 which would indicate that the projection is placed within the

finite bounds of the cylinder. If this fails I fall back to a vertex-vertex test for each edge endpoint to take

into account the capsule’s caps.

The normal is calculated at the edge by linearly interpolating between the normals at each end

point by 𝑣𝑝 . It would be ideal to simply average the normals of the two triangles connected at this edge.

5.2.1.1.3 Vertex-Triangle Feature Test

For vertex-triangle collision tests I check the distance of the vertex from the triangle and if it is

close enough I check to see if the vertex projected to the triangle lies within the triangle. If not, I fall

back to three edge-edge tests then three vertex-vertex tests. The normal of the collision can trivially be

taken as the triangle’s normal.

The algorithm is given a triangle defined by the three counter-clockwise vertices 𝑡0 , 𝑡1 , and 𝑡2 ,

the triangle’s normal which can easily be calculated as 𝑛 = 𝑡2 − 𝑡0 × (𝑡1 − 𝑡0), and the colliding

9 All content © 2009 DigiPen (USA) Corporation, all rights reserved.

vertex 𝑣 . A projected vertex can trivially be found as 𝑣𝑝 = 𝑣 − (𝑣 − 𝑡0) ∙ 𝑛 with the distance from the

triangle easily calculated as 𝑑 = (𝑣 − 𝑡0) ∙ 𝑛 .

If the calculated 𝑑 is close enough for collision, I then perform a point in triangle test with 𝑣𝑝 .

For this, I compute six more vectors:

𝑎 = 𝑡0 − 𝑣𝑝

𝑏 = 𝑡1 − 𝑣𝑝

𝑐 = 𝑡2 − 𝑣𝑝

𝑝 = 𝑏 × 𝑐

𝑞 = 𝑐 × 𝑎

𝑟 = 𝑎 × 𝑏

A point is then considered to be inside a triangle if and only if 𝑝 ∙ 𝑞 < 0 and 𝑝 ∙ 𝑟 < 0.

5.2.1.1.4 Edge-Edge Feature Test

For edge-edge tests I actually check for a line segment colliding with a capsule of thickness

2 ∙ 𝑆𝑘𝑖𝑛 𝑇𝑖𝑐𝑘𝑛𝑒𝑠𝑠, and fall back to vertex vertex collision if this fails. Therefore, I consider the line

segment defined by vertices 𝐴 and 𝐵 colliding with the capsule defined by vertices 𝑃 and 𝑄 and capsule

radius 𝑟 = 2 ∙ 𝑆𝑘𝑖𝑛 𝑇𝑖𝑐𝑘𝑛𝑒𝑠𝑠. I further compute 𝑛 = 𝐵 − 𝐴 , 𝑚 = 𝐴 − 𝑃 , and 𝑑 = 𝑄 − 𝑃 . I then need

to solve the quadratic equation 𝑡 =
−𝑏± 𝑏2−𝑎𝑐

𝑎
 (note, the term b was preceded with a 2 which factored

out the 4 in 4ac and 2 in the denominator) with 𝑎 = 𝑑 × 𝑛
2

, 𝑏 = 𝑑 × 𝑚 ∙ (𝑑 × 𝑛), and 𝑐 =

 𝑑 × 𝑚
2
− 𝑟2𝑑 2. If there are no real roots then the edges are not in contact, if there is one real root

then that is considered the closest point to the capsule, otherwise I consider the closest point to be in

the middle of the two real solutions for 𝑡. After finding this point, I can plug it into the normal vertex-

edge test.

5.2.1.1.5 Edge-Triangle Feature Test

In edge-triangle collision detection, I first try to intersect a line segment representing the edge

with the plane of the triangle and plug the result into my vertex-triangle test. If the closest point is

outside the bounds of the edge, I take the closest endpoint and plug that into the vertex-triangle test. I

ignore the case of an edge being perfectly parallel to the triangle.

I consider the triangle defined by the points 𝑡0 , 𝑡1 , and 𝑡2 with normal 𝑛 = 𝑡2 − 𝑡0 × (𝑡1 −

𝑡0), and the edge defined by endpoints 𝑒0 and 𝑒1 . Then the time of intersection is 𝑡 =
(𝑡0
 −𝑒0)∙𝑛

(𝑒1 −𝑒0)∙𝑛
, gives

the position as 𝑣 = 𝑒0 + 𝑡 ∙ (𝑒1 − 𝑒0). If 𝑡 < 0 then I use 𝑒0 for collision and similarly if 𝑡 > 1 I use 𝑒1 .

10 All content © 2009 DigiPen (USA) Corporation, all rights reserved.

5.2.1.1.6 Triangle-Triangle Feature test

For triangle-triangle tests, I simply run every edge and every vertex of one triangle against the

other and vice versa until either I’ve exhausted every feature or I’ve found a collision.

5.2.2 Soft Vs. Rigid

For soft rigid collision resolution I only consider vertex intersections. I perform the collision

detection in two stages, first checking to see if any vertex in the soft body object lies within the rigid

then again checking if a vertex of the rigid body object lies within the soft object. In both cases, I can

find a minimum penetration and the corresponding triangle, and use that triangle’s normal for the

collision normal.

Checking for a soft vertex in a rigid object is trivial since the rigid object is guaranteed to be

convex in my simulation. Since every triangle stores an outward-facing normal 𝑛𝑖 , a point on the

triangle 𝑡𝑖(this can be any one of the vertices), and given a colliding vertex 𝑣, a vertex can be said to be

inside an object if for every triangle in the rigid object 𝑝 − 𝑡𝑖 ∙ 𝑛𝑖 < 0. The minimum collision depth is

just the largest scalar value from 𝑝 − 𝑡𝑖 ∙ 𝑛𝑖 if the intersecting test passes for all triangles.

The rigid object in soft body test is slightly more complicated. I take advantage of a feature of

the Jordan Curve Theorem (6), mainly that if I cast a ray from a point in any direction and it intersects an

even number of polygons then that point lies within the object being tested, otherwise it lies outside.

I therefore loop through each vertex of the rigid body object 𝑣𝑖 and test against each triangle

defined by vertices 𝑡𝑗 ,0 , 𝑡𝑗 ,0 , and 𝑡𝑗 ,0 as well as triangle normal 𝑛𝑗 . To reduce the computational

complexity, I choose a ray direction of 𝑑 =
0
0
1
 . The point at which this ray intersects the triangle’s

plane is 𝑝 = 𝑣𝑖 + 𝑡 ∙ 𝑑 where 𝑡 =
 𝑡𝑗 ,0 −𝑣𝑖 ∙𝑛

𝑑 ∙𝑛
. This point can then be plugged into the point in triangle

calculation with 𝑎 = 𝑡0 − 𝑝 , 𝑏 = 𝑡1 − 𝑝 , 𝑐 = 𝑡2 − 𝑝 , 𝑝 = 𝑏 × 𝑐 , 𝑞 = 𝑐 × 𝑎 , and 𝑟 = 𝑎 × 𝑏 and a point

considered in the triangle if 𝑝 ∙ 𝑞 < 0 and 𝑝 ∙ 𝑟 < 0.

5.2.3 Rigid Vs. Rigid

Rigid vs. rigid collision uses the separating axis test to determine collisions. The separating axis

test simply loops through a preset list of axes and doesn’t return a collision if there is any axis on which

the two objects do not overlap. For axes, I use each triangle normal of each object, then the cross

product between every edge on one object against every edge on the second. The separating axis test

could be further improved by ignoring redundant and co-planar faces.

5.3 Resolution
Collision resolution in every case is implemented using impulses. The general case impulse is

calculated as 𝑗 =
− 𝜀+1 ∙𝑣𝑟𝑒𝑙 ∙𝑛

1

𝑚 0
+

1

𝑚 1
+𝑛 ∙ 𝐼0

−1∙ 𝑟0 ×𝑛 ×𝑟0 + 𝐼1
−1∙ 𝑟1 ×𝑛 ×𝑟1

 where 𝜀 is the elasticity of the collision,

𝑣𝑟𝑒𝑙 = 𝑣0 − 𝑣1 , 𝑛 is the collision normal from the narrow phase, 𝑣0,1 each object’s velocity, 𝐼0,1
−1 each

object’s inverse inertia, and 𝑟0,1 each object’s vector from the center of mass to the point of collision.

11 All content © 2009 DigiPen (USA) Corporation, all rights reserved.

This impulse is then used to calculate each object’s linear and angular velocity change as:

∆𝑣0
 =

𝑗 ∙ 𝑛

𝑚0

∆𝑣1
 =

−𝑗 ∙ 𝑛

𝑚1

∆𝜔0
 = 𝑟0 × 𝑗 ∙ 𝑛 ∙ 𝐼0

−1

∆𝜔1
 = 𝑟1 × 𝑗 ∙ 𝑛 ∙ 𝐼1

−1

For all rigid objects, I store the impulse in the object’s local coordinate system. In order to ensure

correct behavior of rigid objects, the inertia must be translated into world coordinates. I simply use the

model-world rotation matrix 𝑅 and set 𝐼−1 ′
= 𝑅𝐼−1𝑅𝑇 (𝐼−1 because impulse uses the inverse inertia).

5.3.1 Soft-Soft

Collisions between soft objects present a particularly interesting issue. Objects interpenetrating

but moving away from each other can create an impulse actually pulling them towards each other.

Under normal circumstances, this can trivially be avoided by ignoring impulses that are directed away

from the object’s center compared to the collision normal. This will not work in cases such as an object

colliding with the center of the torus in my demo, since all valid impulses should be pointing towards the

center along the collision vector.

To resolve this, I first impose a restriction to the collision normals specifying that each normal

must point away from a higher order face (triangle being the highest) and towards a lower-order face

(vertex being the lowest). If both features are of the same order then I specify that the normal must

point away from the second object passed into my resolution step. This should come by default from

the narrow phase collision detection algorithms I mentioned above. I can then specify that 𝑗 must

always be positive. Since 𝑗 is multiplied with 𝑛 , the impulse applied to the first object should always be

in the positive 𝑛 direction and therefore automatically exclude any impulses applied in the wrong

direction. A nice feature, though, of pure soft collisions is that there is no rotation component to the

impulse so the impulse equation can be simplified to 𝑗 =
−(𝜀+1)𝑣𝑟𝑒𝑙 ∙𝑛

1

𝑚 0
+

1

𝑚 1

.

Similarly, objects may already be intersecting when a collision is detected. It would then be

imperative to move intersecting features so that the objects are no longer intersecting by the end of the

collision resolution step. I found that the easiest solution is just to move the vertex away from the

triangle by the specified skin thickness. Thanks to the spring force, I find that this results in visibly

correct behavior of the simulation when a large number of potential intersection is detected, which is

one of the reasons why I weight the attraction force of particles stronger than the repelling force. I

chose to resolve a collision with a triangle since there is a physical plane and trivial axis (the normal) to

separate along. Further, I chose to use the vertex instance since in a vertex triangle intersection the

vertex is guaranteed to lie within the Veroni region of the triangle. An edge or triangle may have

12 All content © 2009 DigiPen (USA) Corporation, all rights reserved.

endpoints far outside the range of another triangle which results in visibly incorrect behavior if they are

simply moved along the triangle normal.

For impulse based collision resolution it is still necessary to provide a mass to compute an

impulse. I use sum of the vertex masses for each object involved. Therefore, a triangle’s mass is the

sum of all three of its vertices, an edge’s the sum of each endpoint’s mass, and a single vertex only

provides its own mass. It may then take several frames to fully reverse the velocity of a soft body, but

this should be expected.

5.3.2 Soft-Rigid

Similar to soft-soft intersections, I only consider the vertices in collision on the soft body object

when computing the impulse, but I do use the mass of the entire rigid object. This means that if a soft

and rigid body have the same mass, then the rigid object will bounce less and the vertices under

collision on the soft object bounce more, but the pressure force counteracts this behavior leading to a

realistic interaction. Since all collisions are essentially vertex triangle in nature, I correct

interpenetration the same way I would in triangle vertex collision in soft-soft interactions.

5.3.3 Rigid-Rigid

I use the axis of minimal penetration as my collision axis. I correct for interpenetration by simply

moving the objects away from each other by the collision depth. I do not restrict the impulse direction

when resolving rigid-rigid collisions.

6 Results

6.1 System Specifications
 Amd X2 4600+

 2GB DDR2 RAM

 nVidia GeForce 8600 GTS

6.2 Geometry Tests
 Sphere: 8 stacks x 8 slices

 Torus: 16 stacks x 16 slices

 Cube: 6 faces, 2 triangles each

6.3 Benchmarks
All benchmarks attained by visually monitoring a framerate counter updated every frame.

 Single soft body sphere: ~60fps

 Single soft body torus: ~45fps

 Two soft body spheres: ~50fps

o In contact: ~30fps

 Three soft spheres: ~30fps

o in contact: ~20fps

13 All content © 2009 DigiPen (USA) Corporation, all rights reserved.

 Soft sphere and torus in constant contact (sphere in middle): ~20fps

 Soft torus with four rigid cubes in middle: ~18fps

6.4 Pressure Model
Sphere at n=100 k=150 (left) and n=1 k=10 (right).

6.5 Collision Detection
Two soft spheres in collision (top left) displaying collision particles, three soft spheres and a soft torus in

contact (top right), three spheres soft spheres, a soft torus, and four rigid cubes (bottom left) displaying

collision particles, and a soft cat model colliding with a soft sphere (bottom right).

14 All content © 2009 DigiPen (USA) Corporation, all rights reserved.

7 Future Research
Some immediate possible improvements include better procedural generation of collision points,

accurately computing the number of particles required to cover the entire convex surface of an object

(i.e. center of the torus) or scaling the number of particles based on various metrics such as the number

of particles that actually are generating intersections. Additional areas of interest would be creating a

spatial subdivision algorithm that could be implemented in real-time to augment or replace the particle

based system and alternative particle distribution functions to ensure collisions are not missed when

particles coalesce.

Other physically interesting areas to explore would be simulating viscosity, allowing for physical

splitting and joining of soft bodies, and the simulation of various surface properties such as friction

between soft bodies.

8 Works Cited
1. Matyka, Maciej and Ollila, Mark. Pressure Model of Soft Body Simulation. [Online] November 20,

2003. [Cited: April 13, 2009.] http://www.ep.liu.se/ecp/010/007/ecp01007.pdf.

2. Zhang, Cha and Chen, Tsuhan. Efficient Feature Extraction For 2D/3D Objects in Mesh

Representation. [Online] May 18, 2001. [Cited: April 13, 2009.]

http://amp.ece.cmu.edu/Publication/Cha/icip01_Cha.pdf.

3. Particle-based Collision Detection. Savchenko, Vladimir, et al. Spain, Granada : s.n., 2003. Short

papers proceedings of Eurographics EG2003.

4. Mirtich, Brian. V-Clip: Fast and Robust Polyhedral. Mitsubishi Electric Research Laboratories. [Online]

December 1997. [Cited: April 25, 2009.] http://www.merl.com/papers/docs/TR97-05.pdf.

5. A Fluid Based Soft-Object Model. Nixon, Daniel and Lobb, Richard. July/August 2002, IEEE Computer

Graphics and Applications, vol. 22, no.4, pp. 68-75.

6. Ericson, Christer. Real Time Collision Detection. Real Time Collision Detection. San Francisco : Morgan

Kaufmann Publishers, 2005, 5.4, p. 203.

